Недоступный для наблюдения
недоступный для наблюдения
Универсальный русско-немецкий словарь.
.
.
Смотреть что такое “недоступный для наблюдения” в других словарях
— историческое развитие вида и более крупных таксономических групп, охватывающее большие промежутки времени; надвидовая эволюция.
Макроэволюция включает процессы, ведущие к образованию систематических групп крупнее вида (родов, семейств, отрядов и т. д.).
Основным способом осуществления макроэволюции является дивергенция.
Рис.
. Схема макроэволюции
В отличие от микроэволюции макроэволюция недоступна непосредственному наблюдению и экспериментальному подтверждению, так как происходит медленно и занимает миллионы лет. Доказательствами макроэволюции являются данные палеонтологии, сравнительной анатомии, эмбриологии, биохимии и биогеографии.
Процессы образования новых видов и процессы формирования более крупных систематических групп не имеют значительных различий. В основе макроэволюции лежат микроэволюционные факторы: изменчивость, борьба за существование и естественный отбор.
Процесс микроэволюции, вызывающий дивергенцию популяций, продолжается без перерыва и на макроэволюционном уровне внутри возникших групп организмов. Микроэволюцию и макроэволюцию следует рассматривать как две стороны единого эволюционного процесса.
Ответка
Задайте свой вопрос и получите ответ от профессионального преподавателя. Выберите лучший ответ.
5 – 9 классы
А13Б25В46. )
1. Недоступна наблюдению. Доступна непосредственному наблюдению. Происходит в результате действия наследственной изменчивости, борьбы за существование и естественного отбора. Происходит непрерывно. Приводит к результату за сотни и тысячи лет. Приводит к образованию надвидовых таксонов.
Ответы на вопрос
Бесплатные вебинары с ответами на все вопросы у нас на канале!
Репетиторы в городах
недоступен для наблюдения
Русско-английский научно-технический словарь переводчика.
.
.
Смотреть что такое “недоступен для наблюдения” в других словарях
В 1933 году американский астроном Фриц Цвикки исследовал скопление галактик Волосы Вероники. Цвикки выполнил оценку его массы, подсчитав примерное количество галактик в скоплении и количество звезд в галактике, и получил значение, составляющее примерно 10 13 масс Солнца. Он также решил проверить эту оценку другим способом, измерив скорости галактик: чем выше скорость, тем больше гравитационная сила, действующая на галактику, и тем больше общая масса скопления. Масса, рассчитанная Цвикки этим методом, оказалась равной 5×10 14 масс Солнца, то есть в 50 раз больше. Подобное расхождение на тот момент не было воспринято слишком серьезно, поскольку у астрономов было очень мало информации о межзвездной пыли, газе, карликовых звездах. Тогда считалось, что эта дополнительная масса может скрываться именно в них.
Межзвездная пыль и газ
В 1970 году Вера Рубин и Кент Форд изучали зависимость скорости звезд от их отдаленности от центра галактики Андромеда (так называемая кривая вращения). Так как основная часть звезд сконцентрирована вблизи центра галактики, логично предположить, что чем дальше звезда от центра, тем меньше должна быть гравитационная сила, действующая на нее, и тем меньше должна быть ее скорость. Однако оказалось, что для звезд на периферии такой закон не выполняется и кривая выходит на плато.
Кривая вращения галактики — это график зависимости орбитальной скорости звезд и газа в галактике от расстояния до ее центра. Наблюдения показывают, что по мере удаления от центра график выходит на плато
Это означало, что основная масса, которая влияет на вращение звезд, не просто скрыта, но и распределена вплоть до периферии или еще дальше. Позже подобные кривые были прорисованы для различных галактик с абсолютно тем же результатом. Для многих эллиптических галактик эти кривые не только не спадали, но и возрастали. Получается, что большая часть массы (в среднем более 90%) заключена не в звездах, и эта скрытая масса распределена далеко за областью галактического диска в виде сферического гало.
Межзвездная пыль и газовые облака теперь уже никак не могли объяснить наличие скрытой массы: частицы пыли или молекулы газа из-за взаимодействия друг с другом, трения и излучения теряли бы энергию и постепенно перетекали бы с периферии в центр. Поэтому гипотезу газопылевой природы пришлось отбросить.
Слабо излучающие астрофизические объекты
Следующая простая и очевидная гипотеза предполагала, что скрытая масса может быть заключена в каких-нибудь астрофизических объектах (MACHO — MAssive Compact Halo Object), таких как белые, красные или коричневые карлики, нейтронные звезды, черные дыры или даже массивные планеты типа Юпитера. Из-за малых размеров и слабой светимости эти объекты не видны в телескоп, и, вполне возможно, их так много, что они и обеспечивают наличие этой скрытой массы.
Но если они не видны в телескоп, как же можно их обнаружить? Когда слабосветящийся массивный объект (MACHO) оказывается между земным наблюдателем и ярким видимым объектом, он работает как гравитационная линза, и наблюдаемый объект становится ярче. Это явление называется гравитационным микролинзированием. Наличие MACHO должно было бы привести к огромному количеству событий микролинзирования. Однако наблюдения с телескопа Hubble показали, что таких событий очень мало и если такие объекты существуют, то их масса составляет меньше 20% от массы галактик, но никак не 95%.
Более того, наблюдения космического реликтового фона позволяют довольно точно оценить число барионов (протонов и нейтронов), которые могли родиться в ранней Вселенной в период нуклеосинтеза. Полученные оценки позволяют утверждать, что видимая нами барионная материя (звезды, газ, пылевые облака) — это большая часть всей барионной материи в нашей Вселенной. Поэтому скрытая масса не может состоять из барионов.
Модифицированная гравитация
А что если никакой скрытой массы вовсе нет? Это вполне возможно, если, например, теория гравитации, которую мы применяем, на таких масштабах неверна.
Чем больше гравитационная сила, действующая на объект (в данном случае галактику или отдельную звезду), тем больше ее ускорение (известный всем со времен школы второй закон Ньютона) и, соответственно, скорость, так как центростремительное ускорение пропорционально квадрату скорости. А если подкорректировать закон Ньютона? В 1983 году израильским физиком Мордехаем Милгромом была предложена гипотеза MOND (MOdified Newtonian Dynamics), в которой закон Ньютона несколько корректировался для случая, когда ускорения достаточно малы (10 −8 см/с 2 ). Такой подход хорошо объяснял кривые вращения, полученные Рубин и Фордом, и возрастающие кривые вращения для эллиптических галактик. Однако в скоплениях, где ускорения галактик куда больше ускорения единичных звезд, MOND не вносил никаких поправок для темной материи, и вопрос оставался открытым.
Таким образом, из многочисленных гипотез, не противоречащих эксперименту, остается только одна возможная, хотя и экзотическая: темная материя — это какие-то частицы небарионной природы. Таких кандидатов в теории существует очень много, однако их подразделяют на две основные группы — холодная и горячая темная материя.
Частицы-кандидаты темной материи. В настоящее время многие гипотезы темной материи (тусклые массивные объекты, модифицированная теория гравитации) отвергнуты наблюдениями, и главными кандидатами являются слабо взаимодействующие частицы
Горячая темная материя
Горячая темная материя — это легкие частицы, движущиеся со скоростями, близкими к скорости света. Наиболее очевидный кандидат на эту роль — самое обычное нейтрино. Эти частицы имеют очень малые массы (раньше считалось, что масса равна нулю), рождаются в недрах звезд и областях звездообразования при различных термоядерных процессах и почти не взаимодействуют с барионным веществом. Однако при том количестве нейтрино, которое есть у нас во Вселенной, для объяснения с их помощью темной материи необходимо, чтобы их масса была около 10 эВ. Но экспериментальные данные показывают, что масса нейтрино не превышает долей одного электронвольта, что в сотни раз меньше, так что этот вариант, по-видимому, отпадает. Еще один вероятный кандидат на звание темной материи — так называемые стерильные нейтрино, гипотетический массивный четвертый вариант нейтрино, не принимающий участия в слабом взаимодействии. Однако такие частицы в экспериментах пока не обнаружены, и факт их существования все еще находится под вопросом.
Космологические наблюдения последних лет показывают, что горячая темная материя (если она существует) может составлять не более 10% от всей темной материи. Дело в том, что различные типы темной материи предполагают различные сценарии формирования галактик. В сценарии горячей темной материи (top-down, сверху вниз) в результате эволюции сперва формируются большие области, наполненные веществом, которые затем схлопываются в отдельные мелкие скопления и в итоге превращаются в галактики. В сценарии холодной темной материи (bottom-up, снизу вверх) сперва формируются мелкие карликовые галактики и скопления, которые затем образуют более крупные структуры. Наблюдения и компьютерное моделирование показывают, что в нашей Вселенной реализуется именно этот сценарий, что указывает на явное доминирование холодной темной материи.
Холодная темная материя
Гипотеза холодной темной материи на сегодняшний день считается самой вероятной. Гипотетические частицы холодной темной материи — медленные (нерелятивистские), они очень слабо взаимодействуют друг с другом и с обычной материей и не излучают фотонов. Они подразделяются на слабо взаимодействующие массивные частицы (WIMP — weakly interacting massive particles) и слабо взаимодействующие легкие частицы (WISP — weakly interacting slim particles).
Вимпы в ксеноне
Поиск WIMP основан на том, что они хотя и очень слабо, но все же взаимодействуют с обычным веществом
При столкновении с ядрами рабочего тела в детекторе могут излучаться фотоны (сцинтилляция), которые можно зарегистрировать с помощью фотоумножителей. Кроме того, вимпы могут ионизировать атомы рабочего тела, что тоже можно обнаружить. Эти два способа обычно комбинируют, чтобы отсеять шум — взаимодействия с другими частицами, космическими лучами и т. п. — и выделить только события, напоминающие столкновения с частицами темной материи. В качестве рабочего тела обычно используют жидкий ксенон. Попытка обнаружить слабо взаимодействующие массивные частицы (WIMP) в эксперименте LUX с помощью бассейна, заполненного 400 кг жидкого ксенона, не увенчалась успехом, но сейчас идет подготовка нового эксперимента DARWIN.
В нем для детектирования WIMP будет использовано 25 т ксенона.
Основной кандидат из группы WISP — аксион, возникающий в теории сильного взаимодействия и имеющий очень малую массу. Эта очень легкая (миллионные доли электронвольта) стабильная и электрически нейтральная частица способна в очень сильных магнитных полях превращаться в фотон-фотонную пару, что дает намек на то, как можно попытаться ее обнаружить в эксперименте.
Не замечать препятствий
В 2007 году в немецкой ускорительной лаборатории DESY начался трехлетний эксперимент Any Light Particle Search, ALPS-I, а три года назад был запущен эксперимент ALPS-IIа, продолжение которого (ALPS-IIc) намечено на ближайшие годы. Эксперимент ADMX (Axion Dark Matter eXperiment) и его нынешнее продолжение ADMX-HF (High Frequency) в Центре экспериментальной ядерной физики и астрофизики (CENPA) в Университете штата Вашингтон также используют сильное магнитное поле сверхпроводящего магнита, в котором аксионы должны превращаться в фотоны.
Впрочем, несмотря на многочисленные попытки, пока что обнаружить WIMP, аксионы или стерильные нейтрино не удалось. Однако отрицательный результат в науке — тоже важный результат, так как он позволяет отсеять те или иные параметры частиц, например, ограничить диапазон возможных масс. Из года в год все новые и новые наблюдения и эксперименты в ускорителях дают новые, более строгие ограничения на массу и другие параметры частиц темной материи. Таким образом, откинув все невозможные варианты и сузив круг поисков, мы становимся все ближе к пониманию того, из чего же все-таки состоит 95% материи в нашей Вселенной.
В вопросах, касающихся природы и свойств темной материи, астрономы до сих пор находятся на начальном этапе изучения, в первую очередь, потому что реальность ее существования до сих пор не доказана.
Теория о существовании этой субстанции была выдвинута более 40 лет назад в качестве объяснения несоответствия между массой всех видимых объектов в галактике с массой самой галактики. Астроном Вера Рубин, которая впервые обнаружила несоответствие, определила, что эта невидимая субстанция крайне распространена, и из нее состоит большая часть Вселенной. Сегодня мы знаем эту субстанцию как темную материю.
Хотя у астрономов есть по меньшей мере три доказательства того, что темная материя существует, ни одна из попыток обнаружить прямое доказательство ее существования и определить ее свойства успехом не увенчалась.
Однако работа ученых из Йельского университета во главе с Питером ван Доккумом, опубликованная в журнале Nature в марте 2018 года, как никогда раньше приблизила ученых к обнаружению еще одного доказательства существования этой субстанции.
Что астрономам известно о темной материи?
Темная материя — субстанция, которая не взаимодействует с другими материями с помощью электромагнитных (EM) или сильных ядерных сил. Отсутствие электромагнитных взаимодействий означает, что она не может испускать, поглощать, отражать, преломлять или рассеивать свет. Это, естественно, делает ее довольно сложным предметом для наблюдений. Тем не менее, около 85% всего вещества во Вселенной представляет собой темную материю.
https://youtube.com/watch?v=kldJzrdh24E%3Ffeature%3Doembed
Пока у ученых нет ни одного практического доказательства того, что темная материя действительно существует, но есть теоретические. Вот три главных.
Галактические кривые вращения
Когда один объект вращается вокруг другого, объект на орбите должен постоянно ускоряться к центральному (или, точнее, они оба ускоряются к их объединенному центру масс). Без этого ускорения орбитальное тело просто улетит.
Чем быстрее движется орбитальное тело, тем большее ускорение требуется, чтобы удержать его на орбите. Поскольку в этом случае ускорение происходит из-за силы тяжести, это означает, что центральная масса должна быть больше.
Красное смещение — сдвиг спектральных линий химических элементов в красную (длинноволновую) сторону. Это явление может быть выражением слабого диффузного рассеяния, эффекта Доплера или гравитационного красного смещения, или их комбинацией. Впервые сдвиг спектральных линий в спектрах небесных тел описал французский физик Ипполит Физо в 1848 году и предложил для объяснения сдвига эффект Доплера, вызванный лучевой скоростью звезды.
Гравитационное линзирование
Общая теория относительности Эйнштейна гласит, что гравитация столь крупных космических объектов, как галактики, искривляет пространство вокруг себя и отклоняет лучи света. При этом возникает искаженное изображение другой галактики — источника света.
Пример гравитационного линзирования, которое с точки зрения существующей теории доказывает наличие темной материи, — фотография скопления галактик Пуля, расположенного в созвездии Киля.
На снимке изображены последствия столкновения двух галактик. Красным на изображении показаны области видимой материи, синим — темная материя, наличие которой определено гравитационным линзированием.
Столь отчетливое разделение объясняется тем, что большая часть светящегося вещества в скоплении галактик находится во внутрикластерной среде — в горячей, плотной плазме. Когда части плазмы сталкиваются друг с другом, значительное количество вещества замедляется и остается в центре. Но темная материя слабо взаимодействует с веществом, поэтому ее компоненты из двух кластеров могут свободно проходить друг через друга — это приводит к изображенному на фотографии разделению.
Реликтовое излучение
В течение первых нескольких сотен тысяч лет после Большого взрыва Вселенная была достаточно горячей, чтобы сильно ионизироваться. Это на время делало ее почти непрозрачной для света — фотоны вращались, как и любая другая частица. Однако, когда все достаточно охладилось, значительные количества протонов и электронов объединились в нейтральный водород, который стал достаточно прозрачен для большей части окружающего его света. Это процесс произошел довольно быстро (с точки зрения космологического времени) — в результате весь свет, содержащийся во Вселенной, условно говоря, внезапно был выпущен наружу, сделав снимок на том этапе ее эволюции. Так упрощенно можно описать реликтовое излучение.
https://youtube.com/watch?v=65xi84yw5lg%3Ffeature%3Doembed
Что необычного нашли в первой галактике?
DF2 — галактика, которая входит в большую группу во главе с массивной эллиптической галактикой NGC 1052. Галактика привлекла внимание ученых тем, что она выглядела по-разному на фотографиях, сделанных аппаратами Dragonfly и Sloan Digital Sky Survey (SDSS). На первом галактика представляла собой пятно слабого света, тогда как на втором — группу точечных объектов.
На основе этих наблюдений ученые во главе с Питером ван Доккумом определили десять шаровых скоплений (большие группы старых звезд) внутри галактики и обнаружили, что они движутся в три раза медленнее, чем при наличии большого количества темной материи. Дело в том, что если бы масса была галактики была больше массы видимых объектов, скопления вращались быстрее.
Научное сообщество оценило публикацию критически — в качестве ошибки исследователей называлось то, что они наблюдали лишь за десятью скоплениями и только в течение двух ночей. Скептики посчитали, что ученые могли упустить из виду ключевые детали движения звездных скоплений, и это в результате исказило их оценку массы галактики и ее видимой материи.
А во второй?
Единственным способом доказать правильность своих наблюдений стал поиск второй галактики, в которой содержалось бы минимальное количество темной материи — и в марте 2019 года такая галактика была обнаружена.
Как отсутствие темной материи может служить доказательством ее наличия?
Для понимания утверждения, что отсутствие темной материи в двух галактиках подтверждает ее наличие во Вселенной в соответствии с Общей теорией относительности, стоит рассмотреть критику идеи о наличии темной материи.
Часть ученых не согласна с тем, что во Вселенной существует темная материя, а теоретические свидетельства ее наличия приписывают так называемой модифицированной ньютоновской динамике (MOND). Эта альтернативная теория гласит, что гравитация в космических масштабах работает не так, как предсказали Исаак Ньютон или Альберт Эйнштейн. Это значит, что Общая теория относительности, на которой строятся теории о существовании темной материи, в случае с галактиками не работает.
Например, физик-теоретик Эрик Верлинде из Амстердамского университета в 2016 году опубликовал научную статью, в которой рассмотрел гравитацию как побочный продукт квантовых взаимодействий и предположил, что дополнительная гравитация, приписываемая темной материи, является эффектом темной энергии — фоновой энергии, вплетенной в ткань пространства-времени Вселенной.
Другими словами, Верлинде считает, что темная материя — не материя, а лишь взаимодействие между обычной материей и темной энергией.
https://youtube.com/watch?v=HneiEA1B8ks%3Ffeature%3Doembed
Открытие ученых из Йельского университета демонстрирует, что темная материя может быть отделена от обычной — при условии, что обе обнаруженные галактики ведут себя в соответствии со стандартной теорией гравитации. То есть происходящие в них процессы можно объяснить с помощью уравнений, открытых Ньютоном и Кеплером.
Какие остались вопросы
Космология достигла невероятных успехов, несмотря на которые, мы так и не можем объяснить некоторые явления во Вселенной. Пожалуй, одной из самых интересных загадок является тёмная материя. После продолжительной дискуссии в научном сообществе на протяжении нескольких десятков лет, специалисты сделали вывод, что известная нам материя, состоящая из атомов, занимает не более 16% пространства Вселенной. Оставшиеся 84% и являются на сегодня тёмной материей, то есть такой, которую мы не можем наблюдать.
Существует гипотеза о том, что в раннеё Вселенной присутствовали другие формы материи и она расширялась не так, как мы думаем (быстрее или медленнее). А если Вселенная расширялась иначе, то и взаимодействие частиц тёмной материи на протяжении этой эпохи было иным и, следовательно, другим было количество оставшегося вещества, которое называют тёмной материей. В целом, гипотезы выдвигаются самые разнообразные и на то, что все проверить уйдёт уйма времени. Помочь в решении этого вопроса может более точное понимание того, что происходило в первые мгновения жизни Вселенной, что само по себе нетривиальная и крайне интересная задача, над которой учёные также работают.
Гало комкующейся тёмной материи с различными плотностями и огромной, рассеянной структурой, которую предсказывают симуляции. Для масштаба показана светлая часть галактики. Поскольку тёмная материя есть везде, она должна быть и в нашей Солнечной системе. Так почему же мы её до сих пор не увидели?
Согласно огромному объёму свидетельств, большая часть Вселенной состоит из некоей массы загадочного типа, которую мы ни разу не измерили напрямую. Протоны, нейтроны и электроны – и вообще вся материя, состоящая из частиц, входящих в Стандартную Модель – из которой состоят планеты, звёзды и галактики, обнаруживаемые нами по всей Вселенной, составляет лишь 15% её общей массы. Остальное состоит из чего-то совершенно другого: холодной тёмной материи. Но если тёмная материя есть повсюду и в огромных количествах, почему мы не увидели в Солнечной системе? Именно такой вопрос задаёт наш читатель:
Все свидетельства наличия тёмной материи и тёмной энергии относятся к далёкому космосу. Довольно подозрительно, что мы не видим никаких свидетельств их существования здесь, в нашей Солнечной системе. Никто никогда не сообщал ни о каких аномалиях в орбитах планет. Однако их очень точно измерили. Если Вселенная на 95% тёмная, такие эффекты можно было бы измерить локально.
Так ли это? Это была одна из первых мыслей, пришедших мне в голову, когда я впервые узнал о тёмной материи (ТМ) 17 лет назад. Давайте разбираться и выяснять истину.
Основная идея ТМ состоит в том, что в какой-то момент в очень юной Вселенной, до появления галактик, звёзд или даже нейтральных атомов, существовало почти идеальное и гладкое море ТМ, распределённой по всему пространству. Со временем гравитация и другие силы прошли через несколько взаимосвязанных этапов:
Флуктуации РИ настолько малы и имеют настолько характерный вид, что они убедительно свидетельствуют о том, что Вселенная в самом начале имела повсюду одинаковую температуру, а также содержала тёмную материю, обычную материю и тёмную энергию в определённых пропорциях.
РИ – это остаточное свечение Большого взрыва: излучение, попавшее в наши глаза, пройдя путь с того момента, когда во Вселенной впервые сформировались стабильные нейтральные атомы. Сегодня мы наблюдаем фотографию Вселенной при переходе от ионизированной плазмы до электрически нейтрального набора атомов, когда давление излучения становится пренебрежимо малым. Холодные участки соответствуют регионам повышенной плотности, поскольку излучению приходится тратить дополнительную энергию (больше среднего) на то, чтобы выбраться из этих гравитационных колодцев; горячие участки – соответственно, регионы с пониженной плотностью.
Участки повышенной, средней и пониженной плотности, существовавшие, когда Вселенной было всего 380 000 лет, теперь соответствуют холодным, средним и горячим участкам РИ
Рисунок холодных и горячих участков на всех масштабах, которые мы можем наблюдать, и корреляция между ними, сообщают нам о составе Вселенной: 68% тёмной энергии, 27% ТМ, 5% нормальной материи. Со временем эти участки повышенной плотности вырастали в звёзды, звёздные скопления, галактики и галактические скопления, а участки пониженной плотности отдавали свою материю окружавшим их участкам повышенной плотности. И хотя мы можем видеть лишь нормальную материю, благодаря тому, что она испускает и взаимодействует со светом и другими видами излучения, ТМ – доминирующая сила, отвечающая за гравитационный рост структур Вселенной.
Тщательное изучение Вселенной демонстрирует, что она состоит из материи, а не из антиматерии, что ТМ и тёмная энергия необходимы, и что нам неизвестны источники всех этих загадок. Однако флуктуации РИ, формирование и корреляции между крупномасштабными структурами, и современные наблюдения гравитационного линзирования указывают на одну и ту же картину.
Поскольку нормальная материя взаимодействует и с самой собой, гравитационный коллапс для нормальной и тёмной материй происходит по-разному. Комок нормальной материи, собравшись под воздействием гравитации, начинает сжиматься. Сжатие сначала идёт по самому короткому измерению, но нормальная материя взаимодействует и сталкивается с другими частицами нормальной материи – точно так же, как ваши руки, хотя они и состоят из атомов, представляющих собой почти пустое пространство, будут хлопать, когда вы попытаетесь провести одну руку через другую. Это взаимодействие приводит к появлению вращающегося диска материи – именно из него и проистекает всё, от дисковых (спиральных) галактик до солнечных систем, планеты в которых движутся по орбитам, лежащим в одной плоскости. Тёмная материя, с другой стороны, не сталкивается ни с самой собой, ни с нормальной материей, из-за чего остаётся в виде крупных и чрезвычайно разреженных гало. И хотя тёмной материи больше, чем обычной, её плотность, допустим, в нашей галактике, гораздо меньше в тех местах, где есть звёзды.
Во время обращения Земли вокруг Солнца меняется наше движение сквозь ТМ в нашей галактике, поэтому её гало должно демонстрировать различные свойства взаимодействия
И теперь мы подходим к основному вопросу. Каким образом ТМ воздействует на Солнечную систему? Большая часть того, что вы, вероятно, представляете себе, так или иначе будет верным: частицы ТМ должны летать в пространстве повсеместно, включая и всё пространство Млечного Пути. А это значит, что ТМ должна быть в Солнечной системе, в Солнце, должна проходить сквозь нашу планету и наши тела. Большой вопрос следующий: по сравнению с массами Солнца, планет, других объектов Солнечной системы, какова будет интересующая нас масса ТМ?
В Солнечной системе в первом приближении орбиты планет определяет Солнце. Во втором приближении большую роль играют и все другие массы (планеты, луны, астероиды, и т.п.). Но чтобы добавить сюда ещё и ТМ, нужно очень сильно повысить точность.
Для ответа нам необходимо сначала понять, что определяет орбиты объектов внутри нашей Солнечной системы. С большим отрывом доминирующей массой в Солнечной системе будет Солнце. С очень точным приближением оно определяет орбиты планет. Но для Венеры планета Меркурий будет внутренней, и в первом приближении орбиту Венеры определяют общая масса Солнца и Меркурия. Орбиту Юпитера определяют сумма массы Солнца и всех внутренних планет, а также пояса астероидов. Для любого объекта в целом его орбита определяется общей массой, заключённой в воображаемой сфере с центром в Солнце и этим объектом на краю сферы.
Если существует море ТМ, пронизывающее всё то пространство, где находимся мы с вами – всю Солнечную систему – то внешние планеты должны взаимодействовать с чуть большей её массой, чем внутренние. И если тут есть достаточно много ТМ, то должен быть способ её обнаружить. Поскольку мы знаем массу Млечного Пути, относительную плотность нормальной и тёмной материи, и у нас есть симуляции, показывающие, как должна вести себя плотность ТМ, мы можем выдать очень неплохие оценки. И после проведения таких расчётов оказывается, что на орбиту Земли должно влиять порядка 10 13 кг ТМ, а на орбиту такой планеты, как Нептун – 10 17 кг.
Но эти цифры крохотные по сравнению со всеми остальными массами! Масса Солнца равна 2 × 10 30 кг, масса Земли – 6 × 10 24 . Упомянутые нами массы в промежутке 10 13 — 10 17 кг сравнимы с массой скромного астероида. Когда-нибудь, возможно, мы и сможем понять Солнечную систему настолько точно, что сможем засечь такие крохотные различия, но пока мы превышаем эту погрешность где-то в 100 000 раз.
Наша Галактика находится внутри огромного и рассеянного гало ТМ, поэтому ТМ должна течь и внутри Солнечной системы. Но плотность её крайне мала, поэтому её очень сложно обнаружить местно
Иначе говоря, ТМ должна быть в Солнечной системе, и влиять на движение внешних планет не так, как на движение внутренних, из-за количества массы, находящегося в сфере с центром в Солнце и радиусом в расстояние до планеты. Вас может заинтересовать вопрос, может ли взаимодействие многих тел, а именно, ТМ, планет и Солнца, привести к захвату дополнительного количества ТМ. Это интересная проблема, и я писал работу на эту тему порядка 10 лет назад. Мы с коллегами обнаружили, что плотность ТМ может повыситься очень сильно, но только если не учитывать, что захваченная масса, что весьма вероятно, будет выкинута обратно. Но даже с таким увеличением, максимальная масса ТМ, после 4,5 млрд лет (на графике – пурпурный) всё равно находится гораздо ниже всех наблюдаемых ограничений.
Количество галактической ТМ, находящейся внутри орбит планет разного радиуса нашей Солнечной системы (синий), и общее количество ТМ, которое должно было быть захвачено за всё время жизни Солнечной системы, без учёта выбросов её обратно, а также наилучшее ограничение, взятое из работы 2013 года, по максимальному количеству ТМ, которое в принципе может находиться у нас. Мы пока не добрались до возможностей проверить её наличие.
В нашей Солнечной системе действительно есть ТМ, и она должна оказывать реальное влияние на все остальные частицы материи вокруг неё. Если существует перекрёстное взаимодействие между частицами нормальной и тёмной материи, тогда в экспериментах по прямому обнаружению должна быть возможность обнаружить её прямо на Земле. А если нет, то гравитационные эффекты ТМ, проходящей сквозь Солнечную систему, как захваченной, так и свободной гравитационно, должны влиять на орбиты планет. Но до тех пор, пока наши измерения не станут достаточно точными, этого гравитационного эффекта не будет достаточно ни для каких прямых обнаружений. Пока что нам приходится смотреть на Вселенную за пределами Солнечной системы, чтобы наблюдать воздействие ТМ на пространство-время.